Methane Hydrate Combustion

Introduction

Methane Hydrates are molecules of methane (CH₄) bounded within a crystal of ice (H₂O) created under high pressure and low temperature. Methane Hydrates are important because:

- They are currently being studied for extraction from the depths of the ocean to use as a source of energy.
- It is estimated the newfound resource could supply about 250 years worth of natural gas.
- One of the properties of methane is that it is extremely flammable and may form explosive mixtures with air.
- Methane Hydrate properties are not all known.
- The W.M. Keck Foundation Deep-Ocean Laboratory at UC Irvine is studying the combustion and burning characteristics.

Figure 1: Clathrate Structure (Gas Hydrate)

Methane Hydrate structure of methane bounded by crystal ice.

Figure 2: Existing Combustion Facility

This combustion facility was built by a previous team. We are using this facility for reference. The facility was deemed not fit for methane hydrate combustion testing by customer.

Goal & Requirements

To redesign, construct, and test a Methane Hydrate combustion facility that permits emission monitoring from a 50 cc methane hydrate sample during combustion.

- Accurate Combustion Emission readings using Enerac 700 probe
- Laminar Airflow (Re <2100) and uniform airflow
- Ability to provide 0 to 10 times excess air into system
- Enable measurement of air inlet and exhaust outlet volumetric flowrate
- Enable measurement of water vapor emissions, methane hydrate weight loss, and liquid water during combustion
- Visual access to combustion process
- Ability to hold at least 50 grams of methane hydrate sample

Progress

Process of acquiring simulations in Figure 3 and Figure 4:

- Performed experiments with gel Ethanol (solid, hydrocarbon fuel substitute) combustion
- Determined gel Ethanol & Methane Hydrate mass loss rate and combustion emissions concentrations from experimental data
 - Methane Hydrate data provided by Navid
- Derived volumetric air flow rate and required excess air concentrations
- Evaluated alternative air inlet designs with SolidWorks Flow Simulation using air flow rate

Figure 3: One inlet ⅝ inch diameter hole for airflow

Figure 4: Seven hole ring of 1/16 inch diameter for airflow

Timeline

- **Fall**
 - Design specifications and parameters determined
 - Simulations made
 - Materials and equipment selected

- **Winter**
 - Facility manufactured and fabricated by the end of winter quarter

- **Spring**
 - Testing of facility through Methane Hydrate Combustion
 - Prototype ready to present

Acknowledgements

The team would like to thank Professor Derek Dunn-Rankin and Navid Saeidi for continuous support and advice. We would also extend a thank you to the W.M. Keck Foundation for providing us resources.