

Overview

The key advantage that additive manufacturing (AM) has over traditional manufacturing is the ability to produce complex parts more efficiently. However, the presence of support structures is vital when adopting AM technique as not all geometries can be manufactured instantly.

Purpose

In this project, we will be focusing on designing the most efficient support structures for three unique parts using the NX software by Siemens, which will enable us to reduce material waste and thus save cost and time for the manufacturing process.

Existing Solution

Figure 1. Lattice Structures (Diamond and gyroid)

Figure 2. Different part orientations with support for a "T" structure

Advantages

- Reduce build time
- Reduce material waste
- Providing structural rigidity
- De-powder much easily

Disadvantages

- Inconsistent at high resolution.
- High thermal gradients may cause distortion.

Part Orientation Optimization Using NX

User has the ability to choose their design goals:

- Surface Area
- Support Volume
- Print Time
- Overheating

Technology and Materials

Figure 3. EOS M 290 3D Printer

EOS M 290 3D Printer utilizes DMLS technology to flash a powerful laser which traces the geometry of the object on the powder bed.

AlSi10Mg is the printing material which is tough, strong, and has low specific weight.

Boundary Condition:

- Maximum overhang angle at 45°.
- Maximum overheating angle at 60°.
- **Types of Support:**
- Hatch support (with depowdering holes) • Tree support
- **Overview**:
- Minimized the overheating issue during the manufacturing process.
- it takes to de-powder

Design Requirements

Post Processing Guidelines

Support Guidelines

Build Restrictions

Acknowledgements

Our team thanks the following people for their continued support and mentorship provided throughout the project: Morf3D Engineers: Jeffrey Blanford and Robert Mendez; Prof. Mark Walter, Dir. Ben **Dolan**, and **Moatasem Fouda**. Additional thanks to **Morf3D** and **Siemens** for graciously sponsoring this project.

MORF NX: METAL ADDITIVE MANUFACTURING

Zhihao Liu, Timothy Morse, Khuong Nguyen, Antonius Wirjadi, Sam Choi, Sidney Schone, Friedrich Zurawka, Wilson Duong, Jon Gottschalk Sponsored by Siemens & Morf3D

- Figure 4. Part 1 with Its Current Design of Support Structures
- Filled in the through holes to reduce support
 - structure volume, which in terms reducing the time
- Changed the main hole face from circular to
 - diamond to reduce the time it takes to de-powder.

Powder must escape from model during de-powdering (3mm min hole diameter)	De-plating should be time efficient (~30min)	Support removal should be time efficient (30~60 min)	Quality surface finishing (smooth and undamaged)	
Minimum support structures (measured by volumetric %, TBD)	Orient part to prevent major cross-section change (max 45 degrees)	Holes and tubes larger than 10mm in diameter require supports	Avoid long support structures (40-60mm max)	Use chamfers/fillets to eliminate sharp edges
Design must fit in EOS M 290 printer (250x250mm)	Prevent fusing by maintaining a 1.5~5mm gap	Avoid features under 0.4mm (powder-bed process)	Max build height 320mm	Less or no screw holes in part

Design Concepts

Figure 5. Part 2 with Its Current Design of Support Structures

Boundary Condition:

- Maximum overhang angle at 45°
- Prioritized minimizing support volume & overheating

Types of Support:

- Hatch support (with depowdering holes) **Overview**:
- Minimized support volume and overheating at the cost of surface area and print time
- Added machine stock to eliminate need for support structures within holes

References

(1)"Metal Additive Manufacturing / 3D Printing: An Introduction." Inovar Communications, https://www.metal-am.com/introduction-to-metal-additive-manufacturing-and-3d-printing/ (2) "3D Printing Support Structures: A Complete Guide." AMFG, 26 Aug. 2020, https://amfg.ai/2018/10/17/3d-printing-support-structures-guide/. (3) Support Structures for Additive Manufacturing: A Review, <u>https://www.mdpi.com/2504-4494/2/4/64</u>.

Figure 6. Part 3 with Its Current Design of Support Structures **Boundary Condition:**

- Maximum overhang angle at 45°
- Least overheating area
- **Types of Support:**
- Hatch support (with depowdering holes) **Overview**:
- Minimized the overheating issue with this orientation and had the other end, where overheating took place the most, higher to dissipate the heat.
- Added stock to circular holes which would be machined later to reduce overhang area.
- Deleted countersinks for less overhang area

Benefits

- Excess powder collected can be reused for future prints
- Makes post-processing easier for technicians
- Geometrically complex parts can be manufactured with ease

Future Improvements

- Trying to implement lattice support structures to the part instead of relying on hatch supports.
- **Studying bottom-up section views** of part builds to make sure no heat distortion can happen due to large changes in layer cross-sections
- Varying types of support structures use each type to its fullest potential